Numpy
Cool brief questions about numpy
If you want to make batches, where N+1 batch will follow N batch, try this:
import numpy as np batch_quantity = 3 batch_size = 2 some_embedding = 4 initial_data = np.arange(24) reshaped = initial_data.reshape(batch_size, batch_quantity, some_embedding) result_data = reshaped.transpose(1, 0, 2) print(result_data) # [[[ 0 1 2 3] # [12 13 14 15]] # # [[ 4 5 6 7] # [16 17 18 19]] # # [[ 8 9 10 11] # [20 21 22 23]]]
Another info notes:
Change display methods
np.set_printoptions(precision=2) np.set_printoptions(suppress=True)
Split some array in folds(numpy)
y_folds = np.array_split(y_digits, 3)
Shuffle the indices for test data
indexes = np.random.permutation(len(iris_X))
Select max value based on another array max value(numpy)
best_alpha = alphas[scores.index(max(scores))]
Reshape one array to another one shape
face_compressed.shape = face.shape
Reshape numpy array with dynamically calculated second dimension
test_data = np.zeros((4, 3)) test_data.shape # (4, 3) reshaped = test_data.reshape((6, -1)) reshaped.shape # (6, 2)
Create list of 3 random items form 0 to 255
np.random.randint(0, high=256, size=(3, )).tolist()
Assign values to one line in array(notes for tensorflow) .. code-block:: python
M_t = np.arange(15).reshape(5, 3) # array([[ 0, 1, 2], # [ 3, 4, 5], # [ 6, 7, 8], # [ 9, 10, 11], # [12, 13, 14]]) indexes = np.array([0, 1, 0, 0, 0]) new_value = np.arange([101, 102, 103]) (M_t.T * (-1 * (indexes -1))).T + np.outer(indexes, new_value) # array([[ 0, 1, 2], # [103, 104, 105], # [ 6, 7, 8], # [ 9, 10, 11], # [ 12, 13, 14]])