Notation

\(\ne\) - is not equal to

\(\approx\) - approximately equal to

\(\sim\) - is similar to; has distribution;

\(\propto\) - is proportional to

\(\sum\) - sum over .. from .. to ..

\(\prod\) - product over .. from .. to ..

\(\forall\) - for all, for any, for each

\(\exists\) - there exists

\(\exists!\) - there exists exactly one

\(\in\) - is an element of

\(\notin\) - is not an element of

\(\ni\) - such that

\(\Delta\) - delta, change in; Laplace operator

\(\nabla\) - gradient of; divergence of; curl of

\(\partial\) - partial derivative; boundary of; degree of

\(\mathbb{N}\) - natural numbers (1, 2)

\(\mathbb{Z}\) - integers (-1, 0, 1)

\(\mathbb{Q}\) - rational (-1/2, 0.7)

\(\mathbb{R}\) - real ( \(\pi, \sqrt{}\) )

\(\mathbb{C}\) - complex ( \(1 + 2i\) )

\(\delta\)

\(\sigma\)