Notations
\([x]_{+} = max(0, x)\)
- \(\Omega\) - universal set(set that contain all objects)
-
\(\in\) - is member of
- \(2 \in \{1, 2, 3, 4\}\)
-
\(\notin\) - is not member of
- \(2 \notin \{1, 3, 5\}\)
-
\(A’\), \(A^c\), \(\overline{\rm A}\) - \(A\) compliment, everything not in \(A\)
- \(x \in S^c if x \in \Omega, x \notin S\)
-
\(\emptyset\) and \(\varnothing\) or \(\{ \}\) - empty set
- \(\Omega^c = \emptyset\)
-
\(\cup\) - union, everything in both sets
- \(\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}\)
- \(x \in S \cup T \leftrightarrow x \in S \, \textsf{or} \> x \in T\)
- \(\cup_{n} S_{n}\) - union of all \(n\) sets
-
\(\cap\) - intersection, only what is in common in both sets
- \(\{1, 2, 3\} \cap \{2, 3, 4\} = \{2, 3\}\)
- \(x \in S \cap T \leftrightarrow x \in S \, \textsf{and} \, x \in T\)
- \(\cap_{n} S_{n}\) - intersection of all \(n\) sets
-
\(\subset\) - subset of set
- \(\{1, 2, 3\} \subset \{1, 2, 3, 4, 8\}\)
-
\(\supset\) - superset of set
- \(\{1, 2, 3, 4, 8\} \supset \{1, 2, 3\}\)