Probability Models and Axioms

Sample space

  • Describe possible outcomes
  • Describe beliefs about likelihood outcomes

Possible outcomes:

  • List (set) of possible outcomes, \(\Omega\) (omega)
  • List must be:
    • Mutually exclusive
    • Collectively exhaustive
    • All the “right” granularity

Interpretation and uses of probabilities:

  • Measure frequency of the event
  • Description of beliefs / betting performance

Sample space: discrete/finite example

/images/math/probability-theory/probability-models-and-axioms/01_discrete_example.png

Table description

/images/math/probability-theory/probability-models-and-axioms/02_discrete_example_seqential_descr.svg

Sequential description


Two rolls of a tetrahedral die.

Sample space: continuous example

\((x, y)\) such that \(0 \leqslant x, y \leqslant 1\)

/images/math/probability-theory/probability-models-and-axioms/03_continuous_example.png

Probability axioms

Event
is a subset of the sample space. Probability is assigned to events
/images/math/probability-theory/probability-models-and-axioms/event.png

Axioms:

  • Nonnegativity: \(P(A) \geqslant 0\)
  • Normalization: \(P(\Omega) = 1\)
  • (Finite) Additivity: if \(A \cap B = \varnothing\), then \(P(A \cup B) = P(A) + P(B)\)

Some simple consequences of the axioms:

  • \(P(\varnothing) = 0\)
  • \(P(A) + P(A^c) = 1\)
  • if \(A_1, …, A_k\) disjoint, then \(P(A \cup … \cup A_k) = \sum_{i=1}^{k}P(A_i)\)
  • \(P(\{S_1, S_2, …, S_k\}) = P(\{S_1\} \cup \{S_2\} \cup … \cup \{S_k\}) = P(\{S_1\}) + … P(\{S_k\}) = P(S_1) + … + P(S_k)\)

More consequences of the axioms:

  • if \(A \subset B\), then \(P(A) \leqslant P(B)\) (img 1)
  • \(P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(A^c \cap B)\) (img 2)
  • \(P(A \cup B) \leqslant P(A) + P(B)\) - union bound
  • \(P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)\) (img 3)
/images/math/probability-theory/probability-models-and-axioms/conseq_of_axioms.png

Probability calculations

Discrete finite example

Discrete uniform law:

  • Assume \(\Omega\) finite consist of \(n\) equally likely elements
  • Assume \(A\) consist of \(k\) elements, then

\(P(A) = k * frac{1}{n}\)

every outcome prob == \(\frac{1}{16}\)

  • \(P(X = 1) = 4 * \frac{1}{16}\)
  • let \(Z = min(X, Y)\)
    • \(P(Z = 4) = 1/16\)
    • \(P(Z = 2) = 5 * \frac{1}{16}\)

Discrete continuous example

Suppose we have \((x, y)\) such that \(0 \leq x, y, \leq 1\)

Uniform probability law: Probability = Area

\(P(\{(x, y) | x + y \leq 1/2 \})\) = triangle area = \(\frac{1}{2} * \frac{1}{2} * \frac{1}{2}\)

\(P(\{0.5, 0.3 \})\) = area of one point = \(0\)

Probability calculations step

  • Specify sample space
  • Specify a probability law
  • Identify an event of interest(if possible - graphical way)
  • Calculate …

Countable additivity

Let’s we have sample space \(\{1, 2, 3, … \}\)

\(P(n) = \frac{1}{2^n}, n=1, 2..\)

\(\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{2} * \frac{1}{1 - 1/2} = 1\)

P(outcome is even) = \(P(\{2, 4, 6, … \} ) = P(\{2\} \cup \{4\} \cup ..) = P(2) + P(4) + .. =\)

\(= \frac{1}{2^2} + \frac{1}{2^4} + … = \frac{1}{4}(1 + \frac{1}{4} + \frac{1}{4^2} + …) = \frac{1}{4} * \frac{1}{1 - 1/4} = \frac{1}{3}\)

Countable additivity axiom

Strengthens the finite additivity axiom:

  • if \(A_1, A_2. A_3\) is an finite sequence of disjoint events, then \(P(A_1 \cup A_2 \cup A_3 …) = P(A_1) + P(A_2) + P(A_3)\)
  • additivity holds only for “countable” sequence of events
  • the unit square(similarly the real line, etc.) is not countable. (It’s elements cannot be arranged in a sequence)
  • Area” is a legitimate probability law on the unit square, as long as we do not try to assign probabilities/areas to “very strange” sets